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Autonomous Hamiltonian systems 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 

 

 

i i

i i

d p d qH H
= -    ,    =

d t q d t p



Variational Equations 

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The 

deviation vector from a given orbit is denoted by 

v = (δx1, δx2,…,δxn)T , with n=2N 

The time evolution of v is given by 

the so-called variational equations: 

 
dv

= -J P  v
dt

  i , j = 1 , 2 , , n
  
 

  

2
N N

i j

N N i j

0 -I H
J =   ,  P =

I 0 x x

where 

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Symplectic Maps 

The evolution of an orbit with initial condition 

P(0)=(x1(0), x2(0),…,x2N(0))  

is governed by the equations of map T 

P(i+1)=T P(i)  ,  i=0,1,2,…  

The evolution of an initial deviation vector  

v(0) = (δx1(0), δx2(0),…, δx2N(0)) 

is given by the corresponding tangent map 




 i

T
v(i + 1 ) = v(i)  , i = 0 , 1 , 2 ,

P

Consider an 2N-dimensional symplectic map T. In this 

case we have discrete time. 



Maximum Lyapunov Exponent 
Roughly speaking, the Lyapunov exponents of a given orbit characterize the 

mean exponential rate of divergence of trajectories surrounding it.  

1
t

v (t)1
m L C E = = lim ln

t v (0 )


 

Consider an orbit in the 2N-dimensional phase space with initial condition 

x(0) and an initial deviation vector from it v(0). Then the mean exponential 

rate of divergence is:  

σ1=0  Regular motion 

σ10  Chaotic motion 

If we start with more than one linearly independent deviation vectors they 

will align to the direction defined by the largest Lyapunov exponent for 

chaotic orbits.  



The  

Smaller ALignment Index  

(SALI)  

method 



Definition of the SALI 
We follow the evolution in time of two different initial 

deviation vectors (v1(0), v2(0)), and define the SALI (Ch.S. 

2001, J. Phys. A) as: 

When the two vectors become collinear 

SALI(t) → 0  

 ˆ ˆ ˆ ˆ
1 2 1 2S A L I ( t ) = m i n v ( t ) + v ( t ) , v ( t ) - v ( t )

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



Behavior of the SALI for chaotic motion 

For chaotic orbits the two initially 

different deviation vectors tend to 

coincide with the direction defined 

by the maximum Lyapunov 

exponent. 
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Behavior of the SALI for chaotic motion 

3
2 2 2 2i
i i 1 2 1 3

i=1

H = (q + p ) + q q + q q
2




We test the validity of the approximation SALIe-(σ1-σ2)t (Ch.S., 
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit 
of the 3D Hamiltonian 

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09 

σ10.037 

σ20.011 

slope=-(σ1-σ2)/ln(10) 



Behavior of the SALI for regular motion 

Regular motion occurs on a torus and two different initial 

deviation vectors become tangent to the torus, generally  

having different directions.  
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Applications – Hénon-Heiles system 

For E=1/8 we consider the orbits with initial conditions: 

Regular orbit, x=0, y=0.55, px=0.2417, py=0 

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0 

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0  

As an example, we consider the 2D Hénon-Heiles system: 



Applications – Hénon-Heiles system 
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Applications – 4D map 
1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
(mod 2 )

x = x  + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
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For ν=0.5, κ=0.1, μ=0.1 we consider the orbits: 

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.  

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0. 
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The  

Generalized ALignment Indices  

(GALIs)  

method 



Definition of the Generalized 

Alignment Index (GALI) 
SALI effectively measures the ‘area’ of the parallelogram 

formed by the two deviation vectors. 
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1 2
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v - v v v
Area v ^ v
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max v - v , v v
SALI
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Definition of the GALI 

In the case of an N degree of freedom Hamiltonian system or 

a 2N symplectic map we follow the evolution of  
 

k deviation vectors with 2≤k≤2N,  
 

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) 

the Generalized Alignment Index (GALI) of order k : 

ˆ ˆ ˆ  
k 1 2 k

G A L I ( t ) = v ( t )   v ( t )  . . .  v ( t )

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



Behavior of the GALIk for chaotic motion 

GALIk (2≤k≤2N) tends exponentially to zero with 

exponents that involve the values of the first k largest 

Lyapunov exponents σ1, σ2, …, σk : 

 1 2 1 3 1 k- ( σ - σ ) + ( σ - σ ) + . . . + ( σ - σ ) t

k
G A L I ( t )   e

The above relation is valid even if some Lyapunov 
exponents are equal, or very close to each other.  



Behavior of the GALIk for chaotic motion 

N particles Fermi-Pasta-Ulam (FPU) system:  

with fixed boundary conditions, N=8 and β=1.5. 

   
 
  

 
N N

2 42

i i+1 i i+1 i

i=1 i=0

1 1 β
H = p + q - q + q - q

2 2 4



Behavior of the GALIk for regular motion 
If the motion occurs on an s-dimensional torus with sN then the 
behavior of GALIk is given by (Ch.S., Bountis, Antonopoulos, 2008, 
Eur. Phys. J. Sp. Top.): 


  










k k -s

2(k -N)

constant if 2 k s

1
GALI (t)  if s < k 2N - s

t

1
if 2N - s < k 2N 

t



while in the common case with s=N we have : 

 






k

2(k - N )

con stan t if 2 k N

G A L I (t)  1
if N < k 2N

t





Behavior of the GALIk for regular motion 

N=8 FPU system 



Global dynamics 
• GALI2 (practically equivalent to the use of SALI) 

• GALIN 

Chaotic motion: GALIN0 

(exponential decay) 

Regular motion: 

GALINconstant0 

3D Hamiltonian 

Subspace q3=p3=0, p20 for t=1000. 



Global dynamics 

GALIk with k>N 

The index tends to zero both for 

regular and chaotic orbits but with 

completely different time rates: 

Chaotic motion: exponential decay 

Regular motion: power law 

2D Hamiltonian (Hénon-Heiles) 

Time needed for GALI4<10-12 



A time-dependent 

Hamiltonian system 



Barred galaxies 
NGC 1433 NGC 2217 



Barred galaxy model  
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The 

Hamiltonian that describes the motion for this model is: 

2 2 21
( ) ( , , ) ( )

2
x y z b y xH p p p V x y z xp yp Energy      

This model consists of the superposition of potentials describing an axisymmetric 

part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).  

a) Axisymmetric component: 

  i) Plummer sphere:     ii) Miyamoto–Nagai disc: 
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Time-dependent barred galaxy model  
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The 

Hamiltonian that describes the motion for this model is: 
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PSS (t = 1250) 

PSS (t = 3750) 

PSS (t = 6250) 

PSS (t = 8750) 
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Time-dependent 2D 

barred galaxy model  



Time-dependent 3D barred galaxy model  

Interplay between chaotic and regular motion 



Summary 
• The Smaller (SALI) and the Generalized (GALI) ALignment Index methods 

are fast, efficient and easy to compute chaos indicator.  
 

• Behaviour of the Generalized ALignment Index of order k (GALIk):  

 Chaotic motion: it tends exponentially to zero 

 Regular motion: it fluctuates around non-zero values (or goes to zero 
following power-laws) 

 

• GALIk indices :  

 can distinguish rapidly and with certainty between regular and chaotic 
motion  

 can be used to characterize individual orbits as well as "chart" chaotic 
and regular domains in phase space 

 can identify regular motion on low–dimensional tori 

 are perfectly suited for studying the global dynamics of multidimentonal 
systems, as well as of time-dependent models 
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